Answer:
[tex](y+7)(y-3)[/tex]
Step-by-step explanation:
To factorize [tex]y^2+4y-21[/tex]
[tex]\textsf{for} \ ax^2+bx+c \ \textsf{find} \ v, w \ \textsf{such that} \ v \cdot w=a \cdot c \ \textsf{and} \ v+w=b\\ \textsf{ and group into} \ (ax^2+vx)+(wx+c)[/tex]
[tex]a \cdot c=1 \cdot -21=-21[/tex]
[tex]b=4[/tex]
Therefore, the 2 numbers that multiply together to give -21 and add together to give 4 are: 7 and -3
[tex]\implies y^2+7y-3y-21[/tex]
[tex]\implies (y^2+7y)+(-3y-21)[/tex]
Factor the parentheses:
[tex]\implies y(y+7)-3(y+7)[/tex]
Factor out the common term [tex](y+7)[/tex]:
[tex]\implies (y+7)(y-3)[/tex]