Respuesta :

Answer:

[tex](y+7)(y-3)[/tex]

Step-by-step explanation:

To factorize [tex]y^2+4y-21[/tex]

[tex]\textsf{for} \ ax^2+bx+c \ \textsf{find} \ v, w \ \textsf{such that} \ v \cdot w=a \cdot c \ \textsf{and} \ v+w=b\\ \textsf{ and group into} \ (ax^2+vx)+(wx+c)[/tex]

[tex]a \cdot c=1 \cdot -21=-21[/tex]

[tex]b=4[/tex]

Therefore, the 2 numbers that multiply together to give -21 and add together to give 4 are:  7 and -3

[tex]\implies y^2+7y-3y-21[/tex]

[tex]\implies (y^2+7y)+(-3y-21)[/tex]

Factor the parentheses:

[tex]\implies y(y+7)-3(y+7)[/tex]

Factor out the common term [tex](y+7)[/tex]:

[tex]\implies (y+7)(y-3)[/tex]

RELAXING NOICE
Relax