Respuesta :
Answer:
(x - 2)(x - 1)(x + 1)(x + 2)
Step-by-step explanation:
[tex] {x}^{4} - 5 {x}^{2} + 4 \\ \\ = {x}^{4} - 4 {x}^{2} - {x}^{2} + 4 \\ \\ = {x}^{2} ( {x}^{2} - 4) - 1( {x}^{2} - 4) \\ \\ = ( {x}^{2} - 4)( {x}^{2} - 1) \\ \\ = (x + 2)(x - 2)(x + 1)(x - 1) \\ \\ = (x - 2)(x - 1)(x + 1)(x + 2)[/tex]
Answer:
[tex](x+1)(x-1)(x+2)(x-2)[/tex]
Step-by-step explanation:
To factorise [tex]x^4-5x^2+4[/tex] :
Let [tex]x^2=u[/tex]
[tex]\implies x^4-5x^2+4=u^2-5u+4[/tex]
Now factorise [tex]u^2-5u+4[/tex]
[tex]\textsf{for} \ ax^2+bx+c \ \textsf{find} \ v, w \ \textsf{such that} \ v \cdot w=a \cdot c \ \textsf{and} \ v+w=b[/tex]
[tex]\textsf{and group into} \ (ax^2+vx)+(wx+c)[/tex]
[tex]\implies v=-1, w=-4[/tex]
[tex]\implies u^2-u-4u+4[/tex]
Break into groups
[tex]\implies (u^2-u)+(-4u+4)[/tex]
Factor each parentheses:
[tex]\implies u(u-1)-4(u-1)[/tex]
Factor out common term [tex](u-1)[/tex]:
[tex]\implies (u-1)(u-4)[/tex]
Substitute back [tex]u=x^2[/tex] :
[tex]\implies (x^2-1)(x^2-4)[/tex]
Factor both parentheses using the Difference of Two Squares: [tex]a^2-b^2=(a+b)(a-b)[/tex]
[tex]\implies (x+1)(x-1)(x+2)(x-2)[/tex]
Therefore, the factorisation of [tex]x^4-5x^2+4[/tex] is
[tex](x+1)(x-1)(x+2)(x-2)[/tex]
