Proof -
So, in the first part we'll verify by taking n = 1.
[tex] \implies \: 1 = {1}^{2} = \frac{1(1 + 1)(2 + 1)}{6} [/tex]
[tex] \implies{ \frac{1(2)(3)}{6} }[/tex]
[tex]\implies{ 1}[/tex]
Therefore, it is true for the first part.
In the second part we will assume that,
[tex] \: { {1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} = \frac{k(k + 1)(2k + 1)}{6} }[/tex]
and we will prove that,
[tex]\sf{ \: { {1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k + 1)(k + 1 + 1) \{2(k + 1) + 1\}}{6}}}[/tex]
[tex] \: {{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k + 1)(k + 2) (2k + 3)}{6}}[/tex]
[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{k (k + 1) (2k + 1) }{6} + \frac{(k + 1) ^{2} }{6} [/tex]
[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{k(k+1)(2k+1)+6(k+1)^ 2 }{6} [/tex]
[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k+1)\{k(2k+1)+6(k+1)\} }{6}[/tex]
[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k+1)(2k^2 +k+6k+6) }{6} [/tex]
[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k+1)(2k^2+7k+6) }{6} [/tex]
[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k+1)(k+2)(2k+3) }{6} [/tex]
Henceforth, by using the principle of mathematical induction 1²+2² +3²+....+n² = n(n+1)(2n+1)/ 6 for all positive integers n.
_______________________________
Please scroll left - right to view the full solution.