Respuesta :
[tex] \large \orange{ \frak{Given :}}[/tex]
[tex] \\[/tex]
- Width of rectangle = 64 in.
[tex] \\ [/tex]
- Length of the rectangle is twice its width.
[tex] \\ \\ [/tex]
[tex] \large \orange{ \frak{To \: find:}}[/tex]
[tex] \\ [/tex]
- Perimeter of rectangle
[tex] \\ \\ [/tex]
[tex] \large \orange{ \frak{Solution:}}[/tex]
[tex] \\ [/tex]
We know :-
- Length = twice of width
- Length = 2 × width
- Length = 2 × 64
- Length = [tex]\small \bf 128[/tex]
[tex] \\ \\ [/tex]
[tex] \large \orange{ \frak{Digram:}}[/tex]
[tex] \\ \\ [/tex]
[tex] \tt 64in.\begin{gathered} \small \large\boxed{\begin{array}{cc} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \\ \end{array}}\end{gathered} \\ \: \: \: \: \sf128in.[/tex]
[tex] \\ \\ [/tex]
Formula of perimeter of rectangle:-
[tex] \\ [/tex]
[tex] \bigstar \boxed{\rm{}perimeter \: of \: rectangle = 2(l + w)}[/tex]
where :-
l = length of rectangle
w = width of rectangle
[tex] \\ [/tex]
So :-
[tex] \\ [/tex]
[tex] \dashrightarrow\sf{}perimeter \: of \: rectangle = 2(l + w) \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf{}perimeter \: of \: rectangle = 2(64 + 128) \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf{}perimeter \: of \: rectangle = 2(64) + 2(128) \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf{}perimeter \: of \: rectangle = 2 \times 64+ 2(128) \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf{}perimeter \: of \: rectangle =128+ 2(128) \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf{}perimeter \: of \: rectangle =128+ 2 \times 128\\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf{}perimeter \: of \: rectangle =128+ 256\\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\bf{}perimeter \: of \: rectangle =384 \: in\\ [/tex]
[tex] \\ \\ [/tex]
