Respuesta :

[tex]\\ \rm\longmapsto f(x)=40(0.6)^x[/tex]

Now

  • x=4

[tex]\\ \rm\longmapsto f(4)[/tex]

[tex]\\ \rm\longmapsto 40(0.6)^4[/tex]

[tex]\\ \rm\longmapsto 40(1.3)[/tex]

[tex]\\ \rm\longmapsto 5.2ft[/tex]

Option A

Answer:

5.2 ft (nearest tenth)

Step-by-step explanation:

Given function:  [tex]f(x)=40(0.6)^x[/tex]

where:

  • [tex]f(x)[/tex] = height of each bounce (in ft)
  • [tex]x[/tex] = number of bounces

To determine the height of the 4th bounce, substitute [tex]x=4[/tex] into the function:

[tex]\implies f(4)=40(0.6)^4[/tex]

              [tex]=40 \cdot 0.1296[/tex]

              [tex]=5.184[/tex]

              [tex]=5.2 \textsf{ ft (nearest tenth)}[/tex]

RELAXING NOICE
Relax