The diagram shows a circle inside a rectangle....

Answer:
let [tex]x[/tex] = height of rectangle
Given:
Therefore,
Shaded area = area of rectangle - area of circle
Area of rectangle = length × height
= [tex]3x \times x[/tex]
= [tex]3x^2[/tex]
Area of circle = [tex]\pi r^2[/tex]
[tex]=\pi \left(\dfrac{1}{2}x\right)^2[/tex]
[tex]=\dfrac14\pi x^2[/tex]
[tex]\implies \textsf{shaded area}=3x^2-\dfrac14\pi x^2[/tex]
If the radius = 2 cm, then the diameter ([tex]x[/tex]) = 4 cm
Substituting [tex]x = 4[/tex] into the equation:
[tex]\implies \textsf{shaded area}=3(4)^2-\dfrac14\pi (4)^2[/tex]
[tex]\implies \textsf{shaded area}=48-4\pi[/tex]
[tex]\implies \textsf{shaded area}=4(12-\pi) \textsf{ cm}^2[/tex]