Respuesta :

Answer:

x = 1

explanation:

[tex]\sf \rightarrow \dfrac{3}{x} -1 = 2[/tex]

[tex]\sf \rightarrow \dfrac{3}{x} = 2+1[/tex]

[tex]\sf \rightarrow \dfrac{3}{x} = 3[/tex]

[tex]\sf \rightarrow {3} = 3(x)[/tex]

[tex]\sf \rightarrow \dfrac{3}{3} = (x)[/tex]

[tex]\sf \rightarrow x = 1[/tex]

checking if x = 1,

[tex]\sf \rightarrow \dfrac{3}{1} -1 = 2[/tex]

[tex]\sf \rightarrow3 -1 = 2[/tex]

[tex]\sf \rightarrow 2 = 2[/tex]

→ Hence proved x : 1 as L.H.S = R.H.S

Step-by-step explanation:

[tex] \frac{3}{x} - 1 = 2 \\ [/tex]

Adding 1 on both sides, we get

[tex] \frac{3}{x} - 1 + 1 = 2 + 1 \\ \frac{3}{x} = 3[/tex]

By performing cross multiplication, we get

[tex]3 \times x = 3 \times 1 \\ 3x = 3[/tex]

Dividing both sides by 3, we get

[tex] \frac{3x}{3} = \frac{3}{3} \\ x = 1[/tex]

Hence, the value of x is 1.

ACCESS MORE