Solve this Question.

Answer:
x = 1
explanation:
[tex]\sf \rightarrow \dfrac{3}{x} -1 = 2[/tex]
[tex]\sf \rightarrow \dfrac{3}{x} = 2+1[/tex]
[tex]\sf \rightarrow \dfrac{3}{x} = 3[/tex]
[tex]\sf \rightarrow {3} = 3(x)[/tex]
[tex]\sf \rightarrow \dfrac{3}{3} = (x)[/tex]
[tex]\sf \rightarrow x = 1[/tex]
checking if x = 1,
[tex]\sf \rightarrow \dfrac{3}{1} -1 = 2[/tex]
[tex]\sf \rightarrow3 -1 = 2[/tex]
[tex]\sf \rightarrow 2 = 2[/tex]
→ Hence proved x : 1 as L.H.S = R.H.S
Step-by-step explanation:
[tex] \frac{3}{x} - 1 = 2 \\ [/tex]
[tex] \frac{3}{x} - 1 + 1 = 2 + 1 \\ \frac{3}{x} = 3[/tex]
[tex]3 \times x = 3 \times 1 \\ 3x = 3[/tex]
Dividing both sides by 3, we get
[tex] \frac{3x}{3} = \frac{3}{3} \\ x = 1[/tex]