The equations secx+cosecy = 2, and sinx+cosy=k are trigonometry equations
The result of [tex]\frac {3k}4[/tex] is [tex]\frac{3\sin(y)\cos(x)\sin(x) + 3\sin(y)\cos(x)\cos(y)}{2[\cos(x) + \sin(y)]}[/tex]
The equations are given as:
secx+cosecy = 2, and sinx+cosy=k
Divide both equations
[tex]\frac{\sin(x) + \cos(y)}{\sec(x) + \csc(y)} = \frac k2[/tex]
Divide through by 2
[tex]\frac{\sin(x) + \cos(y)}{2[\sec(x) + \csc(y)]} = \frac k4[/tex]
Express sec and cosec as inverse ratios
[tex]\frac{\sin(x) + \cos(y)}{2[1/\cos(x) + 1/\sin(y)]} = \frac k4[/tex]
Take the LCM
[tex]\frac{\sin(y)\cos(x)[\sin(x) + \cos(y)]}{2[\cos(x) + \sin(y)]} = \frac k4[/tex]
Expand
[tex]\frac{\sin(y)\cos(x)\sin(x) + \sin(y)\cos(x)\cos(y)}{2[\cos(x) + \sin(y)]} = \frac k4[/tex]
Multiply through by 3
[tex]\frac{3\sin(y)\cos(x)\sin(x) + 3\sin(y)\cos(x)\cos(y)}{2[\cos(x) + \sin(y)]} = \frac {3k}4[/tex]
Rewrite as:
[tex]\frac {3k}4 =\frac{3\sin(y)\cos(x)\sin(x) + 3\sin(y)\cos(x)\cos(y)}{2[\cos(x) + \sin(y)]}[/tex]
Hence, the result of [tex]\frac {3k}4[/tex] is [tex]\frac{3\sin(y)\cos(x)\sin(x) + 3\sin(y)\cos(x)\cos(y)}{2[\cos(x) + \sin(y)]}[/tex]
Read more about trigonometry equations at:
https://brainly.com/question/8120556