Respuesta :

The equations secx+cosecy = 2, and sinx+cosy=k are trigonometry equations

The result of [tex]\frac {3k}4[/tex] is [tex]\frac{3\sin(y)\cos(x)\sin(x) + 3\sin(y)\cos(x)\cos(y)}{2[\cos(x) + \sin(y)]}[/tex]

How to evaluate 3k/4

The equations are given as:

secx+cosecy = 2, and sinx+cosy=k

Divide both equations

[tex]\frac{\sin(x) + \cos(y)}{\sec(x) + \csc(y)} = \frac k2[/tex]

Divide through by 2

[tex]\frac{\sin(x) + \cos(y)}{2[\sec(x) + \csc(y)]} = \frac k4[/tex]

Express sec and cosec as inverse ratios

[tex]\frac{\sin(x) + \cos(y)}{2[1/\cos(x) + 1/\sin(y)]} = \frac k4[/tex]

Take the LCM

[tex]\frac{\sin(y)\cos(x)[\sin(x) + \cos(y)]}{2[\cos(x) + \sin(y)]} = \frac k4[/tex]

Expand

[tex]\frac{\sin(y)\cos(x)\sin(x) + \sin(y)\cos(x)\cos(y)}{2[\cos(x) + \sin(y)]} = \frac k4[/tex]

Multiply through by 3

[tex]\frac{3\sin(y)\cos(x)\sin(x) + 3\sin(y)\cos(x)\cos(y)}{2[\cos(x) + \sin(y)]} = \frac {3k}4[/tex]

Rewrite as:

[tex]\frac {3k}4 =\frac{3\sin(y)\cos(x)\sin(x) + 3\sin(y)\cos(x)\cos(y)}{2[\cos(x) + \sin(y)]}[/tex]

Hence, the result of [tex]\frac {3k}4[/tex] is [tex]\frac{3\sin(y)\cos(x)\sin(x) + 3\sin(y)\cos(x)\cos(y)}{2[\cos(x) + \sin(y)]}[/tex]

Read more about trigonometry equations at:

https://brainly.com/question/8120556

ACCESS MORE
EDU ACCESS