Answer:
[tex]x[/tex] =[tex]\frac{-2}{3}[/tex] or [tex]x[/tex] = -1
Step-by-step explanation:
quadratic formula⇒ -b ±[tex]\sqrt{b^{2} -4ac}[/tex] / 2a
15[tex]x[/tex]² + 22[tex]x[/tex] = -8
15[tex]x[/tex]² + 22[tex]x[/tex] +8 = 0
taking a=15, b=22 & c=8;
[tex]x[/tex] = (-22 ± [tex]\sqrt{ - 22^{2} 4 × 15 × 8}[/tex])/ 2 x 15 ⇒ (Pls note that the A~s are multiplications.. unable to insert symbols in equations)
= (-22 ± [tex]\sqrt{484 - 480}[/tex]) / 30
= (-22 ± [tex]\sqrt{4}[/tex]) / 30
= (-22 ± 2) / 30
[tex]x[/tex] = [tex]\frac{-22 + 2}{30}[/tex] or [tex]x[/tex] =[tex]\frac{-22 - 2}{30}[/tex]
[tex]x[/tex] = -[tex]\frac{-20}{30}[/tex] or [tex]x[/tex] = [tex]\frac{-30}{30}[/tex]
[tex]x[/tex] =[tex]\frac{-2}{3}[/tex] or [tex]x[/tex] = -1