Use the given information to find (a) sin (s +t), (b) tan (s+t), and (c) the quadrant of s+t cos s=3/5 and cos t= 15/17, s and t quadrant I

Respuesta :

Step-by-step explanation:

Let find the other trig function first, just sin s and sin c.

Use pythagoren identity to find sin a.

[tex]1 - \cos {}^{2} (s) = \sin {}^{2} (s) [/tex]

cos s=3/5 so cos^2(s)=9/25

[tex]1 - \frac{9}{25} = \sin {}^{2} (s) [/tex]

[tex] \frac{16}{25} = \sin {}^{2} (s) [/tex]

[tex] \frac{4}{5} = \sin(s) [/tex]

Since this is in the first quadrant, it is positve.

Let do the the same thing for sin t.

[tex]1 - \frac{169}{289} = \sin {}^{2} ( {}^{} t) [/tex]

[tex] \frac{120}{289} = \sin {}^{2} (t) [/tex]

[tex] \frac{2 \sqrt{30} }{17} = \sin(t) [/tex]

Now, we can compute

a.

[tex] \sin(s + t) = \sin(s) \cos(t) + \cos(s) \sin(t) [/tex]

[tex] \frac{4}{5} \times \frac{13}{17} + \frac{3}{5} \times ( \frac{2 \sqrt{30} }{17} )[/tex]

[tex] \frac{52}{85} + \frac{6 \sqrt{30} }{85} [/tex]

[tex] \sin(s + t) = \frac{52 + 6 \sqrt{30} }{85} [/tex]

b

[tex] \tan(s + t) = \frac{ \tan(s) + \tan(t) }{1 - \tan(s) \tan(t) } [/tex]

Tan s is 4/3

Tan t is 2 times root of 30/ 13

So we have

[tex] \frac{ \frac{4}{3} + \frac{2 \sqrt{30} }{13} }{1 - \frac{8 \sqrt{30} }{39} } [/tex]

[tex] \tan(s + t) = \frac{52 + 6 \sqrt{30} }{39 - 8 \sqrt{30} } [/tex]

c. They are all in 1st quadrant

ACCESS MORE