Answer:
4
Step-by-step explanation:
a and B are the roots of
[tex] {x}^{2} - 2(p + 1)x + {p}^{2} + 8 = 0[/tex]
[tex] {x}^{2} - 2px - 2x + {p}^{2} + 8 = 0[/tex]
This look like a parabola since p will be a constant so let use a quadratic formula
[tex] {x}^{2} -(2p + 2)x + {p}^{2} + 8 = 0[/tex]
[tex]2p + 2± \frac{ \sqrt{4 {p}^{2} + 8p + 4 - (4 {p}^{2} + 32) } }{2} [/tex]
[tex]2p + 2± \frac{ \sqrt{8p - 28} }{2} [/tex]
[tex]2p + 2± \frac{2 \sqrt{2p - 7} }{2} [/tex]
[tex]2p + 2± \sqrt{2p - 7} [/tex]
So the roots are
[tex]2p + 2 + \sqrt{2p - 7} [/tex]
and
[tex]2p + 2 - \sqrt{2p - 7} [/tex]
We know the distance between these two points are
2 so
[tex] |(2p + 2) + \sqrt{2p - 7} - (2p + 2) - \sqrt{2p - 7} | = 2[/tex]
[tex] | \sqrt{2p - 7} + \sqrt{2p - 7} | = 2[/tex]
[tex] |2 \sqrt{2p - 7} | = 2[/tex]
[tex]2 \sqrt{2p - 7} = 2[/tex]
[tex]p = 4[/tex]
Let plug it in to see.
[tex] {x }^{2} - 2(4 + 1)x + {4}^{2} + 8 = 0[/tex]
[tex] {x}^{2} - 10x + 24 = 0[/tex]
[tex](x - 6)(x - 4) = 0[/tex]
[tex]x = 4[/tex]
[tex]x = 6[/tex]
So they have a distance of 2.