Respuesta :

Answer:

c > 1

Step-by-step explanation:

Given equation: [tex]x^2-2x+c=0[/tex]

General form of quadratic equation: [tex]ax^2+bx+c=0[/tex]

We can use the discriminant to determine the value of c for which the equation has no real roots.

[tex]b^2-4ac < 0\implies \textsf{no real roots}[/tex]

From the given equation:

  • [tex]a=1[/tex]
  • [tex]b=-2[/tex]
  • [tex]c=c[/tex]

Inputting these values into the discriminant formula:

[tex]\implies (-2)^2-4(1)(c) < 0[/tex]

[tex]\implies 4-4c < 0[/tex]

[tex]\implies 4 < 4c[/tex]

[tex]\implies 1 < c[/tex]

[tex]\implies c > 1[/tex]

Here

  • a=1
  • b=-2

Discriminant must be less than 0

[tex]\\ \rm\Rrightarrow b^2-4ac<0[/tex]

[tex]\\ \rm\Rrightarrow (-2)^2-4(1)(c<0[/tex]

[tex]\\ \rm\Rrightarrow 4-4c<0[/tex]

[tex]\\ \rm\Rrightarrow 4(1-c)<0[/tex]

[tex]\\ \rm\Rrightarrow 1-c<0[/tex]

[tex]\\ \rm\Rrightarrow 1<c[/tex]

[tex]\\ \rm\Rrightarrow c>1[/tex]

ACCESS MORE