find the height of the tree to the nearest foot.

Answer:
height = 50 ft (nearest foot)
Step-by-step explanation:
This creates a right triangle, where:
Use the tan trig ratio to find the height.
[tex]\mathsf{\tan\theta=\dfrac{opposite \ side}{adjacent\ side}}[/tex]
[tex]\implies \mathsf{\tan(34.6)=\dfrac{height}{72}}[/tex]
[tex]\implies \mathsf{height=72\tan(34.6)}[/tex]
[tex]\implies \mathsf{height=50 \ ft \ (nearest\ foot)}[/tex]
[tex]\\ \rm\Rrightarrow tan\theta=\dfrac{Perpendicular}{Base}[/tex]
[tex]\\ \rm\Rrightarrow tan34.6=\dfrac{x}{72}[/tex]
[tex]\\ \rm\Rrightarrow x=72tan34.6[/tex]
[tex]\\ \rm\Rrightarrow x=72(0.689)[/tex]
[tex]\\ \rm\Rrightarrow x=49.61ft[/tex]