Find the missing side lengths. Answers are in simplest radical form with the
denominator rationalized.

Step-by-step explanation:
Given is the 30°x60°x90° right triangle.
The ratio of its sides is:
Find the missing sides using the ratio above:
Answer:
[tex]\sf x = 4\sqrt{6}[/tex] and [tex]\sf y = 6\sqrt{2}[/tex]
step-by-step explanation:
given:
using tan rule:
[tex]\sf tan(x)= \dfrac{opposite}{adjacent}[/tex]
[tex]\sf tan(60)= \dfrac{y}{2\sqrt{6} }[/tex]
[tex]\sf tan(60)*{2\sqrt{6}= y[/tex]
[tex]\sf y = 6\sqrt{2}[/tex]
using cosine rule:
[tex]\sf cos(x)= \dfrac{adjacent}{hypotensue}[/tex]
[tex]\sf cos(60)= \dfrac{2\sqrt{6} }{x}[/tex]
[tex]\sf x= \dfrac{2\sqrt{6} }{cos(60)}[/tex]
[tex]\sf x = 4\sqrt{6}[/tex]