Respuesta :

The integral distributes over the sum:

[tex]\displaystyle \int \left(4x^{\frac34} + 2x^{\frac34} + 4x^{\frac12} + 2x + 2\right) \, dx \\\\\\ = \int 4x^{\frac34} \, dx + \int 2x^{\frac34} \, dx + \int 4x^{\frac12} \, dx + \int 2x \, dx + \int 2 \, dx[/tex]

Then just integrate each term using the power rule; if n ≠ -1, then

[tex]\displaystyle \int x^n \, dx = \frac{x^{n+1}}{n+1} + C[/tex]

Then your integral is simply

[tex]\displaystyle \int \left(4x^{\frac34} + 2x^{\frac34} + 4x^{\frac12} + 2x + 2\right) \, dx \\\\\\ = \frac{4x^{\frac34+1}}{\frac34+1} + \frac{2x^{\frac34+1}}{\frac34+1} + \frac{4x^{\frac12+1}}{\frac12+1} + \frac{2x^2}2 + \frac{2x^1}1 + C \\\\\\ = \frac{16}7 x^{\frac74} + \frac87 x^{\frac74} + \frac83 x^{\frac32} + x^2 + 2x + C \\\\\\ = \boxed{\frac{24}7 x^{\frac74} + \frac83 x^{\frac32} + x^2 + 2x + C}[/tex]

ACCESS MORE