We know,
[tex]{ \longrightarrow \bf \qquad { { Volume_{(cone) }= \dfrac{1}{3} \pi {r}^{2}h }}}[/tex]
Where,
- r is the base radius of the cone.
- h is the height of thr cone.
Here,
- Radius of the cone is 3 .
- Height of the cone is 4 .
⠀
Substituting the value in the formula :
We will take the value of π as 3.14 .
⠀
[tex]{ \longrightarrow \sf \qquad { { Volume_{(cone) }= \dfrac{1}{3} \times 3.14 \times {3}^{2} \times 4 }}}[/tex]
⠀
[tex]{ \longrightarrow \sf \qquad { { Volume_{(cone) }= \dfrac{1} {\cancel{3}} \times 3.14 \times \cancel9 \times 4 }}}[/tex]
⠀
[tex]{ \longrightarrow \sf \qquad { { Volume_{(cone) }= {1} \times 3.14 \times {3} \times 4 }}}[/tex]
⠀
[tex]{ \longrightarrow \sf \qquad { { Volume_{(cone) }= {1} \times 3.14 \times 12 }}}[/tex]
⠀
[tex]{ \longrightarrow \bf \qquad { { Volume_{(cone) }= 37.68 }}}[/tex]
⠀
Therefore,
- The volume of the cone is 37.68 units³.
⠀