Find the volume of the cone.
Either enter an exact answer in terms of or use 3.14 for TT and round your final answer to the nearest hundredth.
units
4 and 3

Find the volume of the cone Either enter an exact answer in terms of or use 314 for TT and round your final answer to the nearest hundredth units 4 and 3 class=

Respuesta :

We know,

[tex]{ \longrightarrow \bf \qquad { { Volume_{(cone) }= \dfrac{1}{3} \pi {r}^{2}h }}}[/tex]

Where,

  • r is the base radius of the cone.
  • h is the height of thr cone.

Here,

  • Radius of the cone is 3 .
  • Height of the cone is 4 .

Substituting the value in the formula :

We will take the value of π as 3.14 .

[tex]{ \longrightarrow \sf \qquad { { Volume_{(cone) }= \dfrac{1}{3} \times 3.14 \times {3}^{2} \times 4 }}}[/tex]

[tex]{ \longrightarrow \sf \qquad { { Volume_{(cone) }= \dfrac{1} {\cancel{3}} \times 3.14 \times \cancel9 \times 4 }}}[/tex]

[tex]{ \longrightarrow \sf \qquad { { Volume_{(cone) }= {1} \times 3.14 \times {3} \times 4 }}}[/tex]

[tex]{ \longrightarrow \sf \qquad { { Volume_{(cone) }= {1} \times 3.14 \times 12 }}}[/tex]

[tex]{ \longrightarrow \bf \qquad { { Volume_{(cone) }= 37.68 }}}[/tex]

Therefore,

  • The volume of the cone is 37.68 units³.

ACCESS MORE