Respuesta :

Answer:

  π/6 ≈ 11/21 cubic units

Step-by-step explanation:

Use the given values in the formula for the volume of a sphere:

  V = 4/3πr³

  V = (4/3)(22/7)(1/2)³ = 4·22/(3·7·8) = 11/21 . . . . cubic units

We know,

[tex]{\qquad { \longrightarrow \pmb {\sf Volume_{(Sphere)} = \dfrac{4}{3} \pi {r}^{3} }}}[/tex]

Here,

  • Radius of the sphere is [tex] \sf\dfrac{1}{2} .[/tex]

  • We will take the value of π as [tex] \sf\dfrac{22}{7} .[/tex]

Substituting the values in the formula :

[tex] { \longrightarrow {\qquad {\sf Volume_{(Sphere)} = \dfrac{4}{3} \times \dfrac{22}{7} \times {\bigg(\dfrac{1}{2} \bigg)}^{3} }}}[/tex]

[tex] { \longrightarrow {\qquad {\sf Volume_{(Sphere)} = \dfrac{4}{3} \times \dfrac{22}{7} \times \dfrac{1}{8} }}}[/tex]

[tex]{ \longrightarrow {\qquad {\sf Volume_{(Sphere)} = \dfrac{ \cancel4}{3} \times \dfrac{22}{7} \times \dfrac{1}{ \cancel8} }}}[/tex]

[tex]{ \longrightarrow {\qquad {\sf Volume_{(Sphere)} = \dfrac{ 1}{3} \times \dfrac{22}{7} \times \dfrac{1}{ 2} }}}[/tex]

[tex]{ \longrightarrow {\qquad {\sf Volume_{(Sphere)} = \dfrac{22}{3 \times 7 \times 2} }}}[/tex]

[tex]{ \longrightarrow {\qquad {\sf Volume_{(Sphere)} = \dfrac{22}{42} }}}[/tex]

[tex]{ \longrightarrow {\qquad {\bf Volume_{(Sphere)} = \dfrac{11}{21} }}}[/tex]

Therefore,

  • Radius of the sphere is [tex] \bf \dfrac{11}{21} [/tex] units³.
ACCESS MORE