The correlation coefficient of the health research institute data measures the relationship between the age and the years of the smokers
The correlation coefficient is 0.53
The correlation coefficient (r) is calculated as:
[tex]r = \frac{n(\sum xy) - \sum x \sum y}{\sqrt{[n \sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2}}[/tex]
Using the given parameters, we have:
[tex]r = \frac{20 *8249 - 1257* 116}{\sqrt{[20 * 98823 - 1257^2][20 * 836 - 116^2}}[/tex]
Evaluate the exponents
[tex]r = \frac{20 *8249 - 1257* 116}{\sqrt{[20 * 98823 - 1580049][20 * 836 - 13456}}[/tex]
Evaluate the products
[tex]r = \frac{164980 - 145812}{\sqrt{[1976460 - 1580049][16720 - 13456}}[/tex]
Evaluate the differences
[tex]r = \frac{19168}{\sqrt{[396411*3264}}[/tex]
Evaluate the product
[tex]r = \frac{19168}{\sqrt{1293885504}}[/tex]
Evaluate the root
[tex]r = \frac{19168}{35970.6}[/tex]
Evaluate the quotient
[tex]r = 0.53[/tex]
Hence, the correlation coefficient is 0.53
Read more about correlation coefficient at:
https://brainly.com/question/1564293