Find x
I need a complete solution and answer
ty in advance

[tex]\bold{\huge{\underline{ Solution }}}[/tex]
Here, we have
We know that,
Therefore,
Interior angles of the given quadrilateral
We also know that,
That is,
[tex]\bold{ {\angle} B + {\angle } D + {\angle} E + {\angle } G = 360{\degree} }[/tex]
Subsitute the required values,
[tex]\sf{ ( 180 - 9x){\degree} + (180 - 4x){\degree} + (180 - (5x + 25)){\degree} + (180 - (5x - 10){\degree} = 360{\degree}}[/tex]
[tex]\sf{ 180 - 9x + 180 - 4x + 180 - 5x - 25 + 180 - 5x + 10 = 360{\degree}}[/tex]
[tex]\sf{ 180 + 180 + 180 + 180 - 9x - 4x - 5x - 5x -25 + 10 = 360{\degree}}[/tex]
[tex]\sf{ 720 - 23x - 15 = 360{\degree}}[/tex]
[tex]\sf{ 705 - 23x = 360{\degree}}[/tex]
[tex]\sf{ 705 - 360 = 23x }[/tex]
[tex]\sf{ 23x = 345 }[/tex]
[tex]\sf{ x = }{\sf{\dfrac{ 345}{25}}}[/tex]
[tex]\sf{ x = }{\sf{\cancel{\dfrac{ 345}{25}}}}[/tex]
[tex]\bold{ x = 15 }[/tex]
Thus, The value of x is 15°
All the exterior angles of the given quadrilateral are :-
Angle ABD
[tex]\sf{ = 9(15) }[/tex]
[tex]\bold{ = 135{\degree}}[/tex]
Angle CDB
[tex]\sf{ = 4(15) }[/tex]
[tex]\bold{ = 60{\degree}}[/tex]
Angle HGE
[tex]\sf{ = 5(15) - 10 }[/tex]
[tex]\sf{ = 75 - 10 }[/tex]
[tex]\bold{ = 65 {\degree}}[/tex]
Angle DEG
[tex]\sf{ = 5(15) + 25 }[/tex]
[tex]\sf{ = 75 + 25 }[/tex]
[tex]\bold{ = 100 {\degree}}[/tex]
Hence, All the exterior angles of the given quadrilateral are 135° , 60° , 65° and 100°