Respuesta :

Answer:

Δ[tex]=(-m)^2-4[/tex] [tex]\bullet\left(-11\right) > 0[/tex][tex]\ ,the\ number\ of\ intersection:[/tex] [tex]2,intersection:[/tex] [tex]\left(\frac{m}{2}+\frac{\sqrt{44+m^2}}{2},5-\frac{m\left(m+\sqrt{44+m^2}\right)}{2}\right)[/tex][tex],\left(\frac{m}{2}-\frac{\sqrt{44+m^2}}{2},5-\frac{m\left(m-\sqrt{44+m^2}\right)}{2}\right)[/tex]

Step-by-step explanation:

[tex]Analyze\ the\ intersection\ of\ y=5-mx\ and\[/tex]
[tex]x^2+y=16:[/tex]

[tex]\downarrow[/tex]

Δ[tex]=(-m)^2-4\bullet\left(-11\right) > 0\ ,the\ number\ of[/tex]
[tex]intersection:\ 2,intersection:[/tex]
[tex]\left(\frac{m}{2}+\frac{\sqrt{44+m^2}}{2},5-\frac{m\left(m+\sqrt{44+m^2}\right)}{2}\right),[/tex]

[tex]\left(\frac{m}{2}-\frac{\sqrt{44+m^2}}{2},5-\frac{m\left(m-\sqrt{44+m^2}\right)}{2}\right)[/tex]

I hope this helps you

:)

ACCESS MORE