Respuesta :

Given :-

  • figure is a sphere
  • π = 3.14
  • Radius = 7 (unit)
  • answer should be in unit³

[tex] \\ \\ [/tex]

To find :-

  • As we know answer should have unit³ so we get to know we have to find volume of sphere.

[tex] \\ \\ [/tex]

Solution :-

we know:

[tex] \\ [/tex]

[tex] \bigstar \boxed{ \rm Volume \: of \: sphere = \frac{4}{3}\pi {r}^{3} }[/tex]

[tex] \\ [/tex]

So:-

[tex] \\ [/tex]

[tex] \dashrightarrow \sf Volume \: of \: sphere = \frac{4}{3}\pi {r}^{3} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf Volume \: of \: sphere = \frac{4}{3}\pi \times {7}^{3} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf Volume \: of \: sphere = \frac{4}{3}\pi \times {7} \times 7 \times 7 \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf Volume \: of \: sphere = \frac{4}{3}\pi \times 343 \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf Volume \: of \: sphere = \frac{4}{3} \times 3.14\times 343 \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf Volume \: of \: sphere = \frac{4}{3} \times 1077.02 \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf Volume \: of \: sphere = \frac{4 \times1077.02 }{3} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf Volume \: of \: sphere = \frac{4308.08}{3} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \pmb{\sf Volume \: of \: sphere =1436.03(approx)} \\ [/tex]

[tex] \\ \\ [/tex]

❥ W᭄indy✞Mint࿐

We are given with a sphere whose radius is 7 units and we need to find the volume of the sphere , but before starting let's recall that ;

  • [tex]{\boxed{\bf{Volume_{(Sphere)}=\dfrac{4}{3}\pi r^{3}}}}[/tex]

Where r is the radius of the sphere . So , now in this question applying the same concept we have ;

[tex]{:\implies \quad \sf Volume_{(Sphere)}=\dfrac{4}{3}\pi (7)^{3}}[/tex]

[tex]{:\implies \quad \sf Volume_{(Sphere)}=\dfrac{4}{3}\pi \times 343}[/tex]

[tex]{:\implies \quad \bf \therefore \quad \underline{\underline{Volume_{(Sphere)}=\dfrac{1372\pi}{3}\:\: units^{3}}}}[/tex]

ACCESS MORE