Respuesta :

Answer:

[tex]y = 20\times 2^{x}[/tex].

Step-by-step explanation:

Let [tex]y = (a)\, (b)^{x}[/tex] denote this exponential function for some constant [tex]a[/tex] and [tex]b[/tex] ([tex]b > 0[/tex]) that need to be found.

Assume that the graph of the function [tex]y = (a)\, (b)^{x}[/tex] goes through the point [tex](x_{0},\, y_{0})[/tex]. Substituting in [tex]x = x_{0}[/tex] and [tex]y = y_{0}[/tex] should satisfy the equation of this function:

[tex]y_{0} = (a)\, (b)^{x_{0}}[/tex].

For example, [tex]y = (a)\, (b)^{x}[/tex] goes through the point [tex](0,\, 20)[/tex]. Substituting in [tex]x = 0[/tex] and [tex]y = 20[/tex] should then satisfy the equation of this function:

[tex]20 = (a)\, (b)^{0}[/tex].

Similarly, since the graph of this function goes through [tex](7,\, 2560)[/tex] where [tex]x = 7[/tex] and [tex]y = 2560[/tex]:

[tex]2560 = (a)\, (b)^{7}[/tex].

In general, the constant [tex]a[/tex] in such systems could be eliminating by dividing one equation by the other. For example, dividing [tex]2560 = (a)\, (b)^{7}[/tex] by [tex]20 = (a)\, (b)^{0}[/tex] gives:

[tex]\displaystyle \frac{2560}{20} = \frac{(a)\, (b)^{7}}{(a)\, (b)^{0}}[/tex].

Simplify to obtain:

[tex]\displaystyle 128 = b^{7 - 0}[/tex].

[tex]\displaystyle 128 = b^{7}[/tex].

[tex]b^{7} = 128[/tex].

Since the exponent of [tex]b[/tex] is an odd number, the sign of [tex]b[/tex] should also be positive- same as the sign of [tex]128[/tex]. Extra steps would be required if the exponent of [tex]b[/tex] is even.

Raise both sides to the [tex](1/7)[/tex]th power to find the (unique) value of [tex]b[/tex]:

[tex]b = 128^{1/7} = 2[/tex].

Substitute [tex]b = 2[/tex] back into either equation (for example, [tex]2560 = (a)\, (b)^{7}[/tex]) to find the value of [tex]a[/tex]:

[tex]2560 = (a)\, (2)^{7}[/tex].

[tex]\begin{aligned}a &= \frac{2560}{2^{7}} \\ &= \frac{2560}{128} \\ &= 20\end{aligned}[/tex].

Thus, this exponential function would be [tex]y = 20\times 2^{x}[/tex].

ACCESS MORE