Respuesta :

The increment in [tex]f[/tex] is approximately [tex]-3.883\times 10^{-3}[/tex].

How to estimate an increment in [tex]f(x)[/tex] by linear approximation

The linear approximation is derived from definition of tangent, that is to say:

[tex]\Delta f \approx m_{x}\cdot \Delta x[/tex] (1)

Where:

  • [tex]m_{x}[/tex] - Slope of the function evaluated at [tex]x[/tex].
  • [tex]\Delta x[/tex] - Increment in [tex]x[/tex].
  • [tex]\Delta f[/tex] - Increment in [tex]f[/tex].

The slope is found by derivatives:

[tex]m_{x} = \frac{\pi}{5} \cdot \cos \frac{\pi\cdot x}{5}[/tex]    (2)

If we know that [tex]x = 3[/tex] and [tex]\Delta x = 0.02[/tex], then the increment in [tex]f[/tex] is:

[tex]\Delta f \approx \left(\frac{\pi}{5}\cdot \cos \frac{3\pi}{5} \right)\cdot (0.02)[/tex]

[tex]\Delta f \approx -3.883\times 10^{-3}[/tex]

The increment in [tex]f[/tex] is approximately [tex]-3.883\times 10^{-3}[/tex]. [tex]\blacksquare[/tex]

To learn more on linear approximations, we kindly invite to check this verified question: https://brainly.com/question/19468438