Respuesta :
Jackie's conclusion about the quadrilateral is correct because the slopes are opposite reciprocals, and the side lengths are congruent
The slope of each side
The vertices are given as:
A(2, 1), B(5, -1), C(3, -4), and D(0, -2)
The slope is calculated as:
[tex]m = \frac{y_2 - y_1}{x_2 -x_1}[/tex]
So, we have
[tex]AB = \frac{-1 -1}{5-2}[/tex]
[tex]AB = -\frac{2}{3}[/tex]
[tex]BC = \frac{-4 + 1}{3 -5}[/tex]
[tex]BC = \frac{3}{2}[/tex]
[tex]CD = \frac{-2 +4}{0-3}[/tex]
[tex]CD = -\frac{2}{3}[/tex]
[tex]DA = \frac{1 + 2}{2 - 0}[/tex]
[tex]DA = \frac{3}{2}[/tex]
The slope shows that the adjacent sides of the quadrilaterals are perpendicular to one another because the slopes are opposite reciprocals
The distance of each side
The distance is calculated as:
[tex]d = \sqrt{(x_2 - x_1)^2 + (y_2 -y_1)^2[/tex]
So, we have:
[tex]AB = \sqrt{(2 - 5)^2 + (1 + 1)^2}[/tex]
[tex]AB = \sqrt{13}[/tex]
[tex]BC = \sqrt{(5 - 3)^2 + (-1 + 4)^2}[/tex]
[tex]BC = \sqrt{13}[/tex]
[tex]CD = \sqrt{(3 - 0)^2 + (-4 + 2)^2}[/tex]
[tex]CD = \sqrt{13}[/tex]
[tex]DA = \sqrt{(0 - 2)^2 + (-2 -1)^2}[/tex]
[tex]DA = \sqrt{13}[/tex]
The lengths indicate that the side lengths of the quadrilaterals are congruent
The conclusion
Because the slopes are opposite reciprocals, and the side lengths are equal; then we can conclude that Jackie's conclusion is correct
Read more about quadrilaterals at:
https://brainly.com/question/16691874