Which list is in order from least to greatest? 9. 4 times 10 Superscript negative 8, 9. 25 times 10 Superscript negative 6, 2. 5 times 10 Superscript 3, 7 times 10 Superscript 3 2. 5 times 10 Superscript 3, 7 times 10 Superscript 3, 9. 25 times 10 Superscript negative 6, 9. 4 times 10 Superscript negative 8 9. 25 times 10 Superscript negative 6, 9. 4 times 10 Superscript negative 8, 7 times 10 Superscript 3, 2. 5 times 10 Superscript 3 9. 4 times 10 Superscript negative 8, 9. 25 times 10 Superscript negative 6, 7 times 10 Superscript 3, 2. 5 times 10 Superscript 3.

Respuesta :

The ascending order is given as

[tex]9.4 * 10 ^{- 8} < \ 925 * 10 ^{-8} < \ 2.5 * 10 ^{11}* 10 ^{-8} < \ 7 * 10 ^{11}* 10 ^{-8}\\\\[/tex]

Then the correct option is A.

What is ascending order?

It is the order of the numbers in which a smaller number comes first and then followed by the next number and then the last number will be the biggest one.

[tex]9.4 * 10 ^{- 8}, 9.25 * 10 ^{- 6}, 2.5 * 10 ^{3}, 7 * 10 ^{3}\\\\[/tex]

The power of 10 should be the same so that we can compare the number.

[tex]9.4 * 10 ^{- 8},\ 925 * 10 ^{-8}, \ 2.5 * 10 ^{3}* 10 ^{-8}* 10 ^{8}, \ 7 * 10 ^{3}* 10 ^{-8}* 10 ^{8}\\\\9.4 * 10 ^{- 8}, \ 925 * 10 ^{-8}, \ 2.5 * 10 ^{11}* 10 ^{-8}, \ 7 * 10 ^{11}* 10 ^{-8}[/tex]

Then compare the numbers, we have

[tex]9.4 * 10 ^{- 8}, \ 925 * 10 ^{-8}, \ 2.5 * 10 ^{11}* 10 ^{-8}, \ 7 * 10 ^{11}* 10 ^{-8}\\\\9.4 * 10 ^{- 8} < \ 925 * 10 ^{-8} < \ 2.5 * 10 ^{11}* 10 ^{-8} < \ 7 * 10 ^{11}* 10 ^{-8}\\\\[/tex]

The ascending order is given as

[tex]9.4 * 10 ^{- 8} < \ 925 * 10 ^{-8} < \ 2.5 * 10 ^{11}* 10 ^{-8} < \ 7 * 10 ^{11}* 10 ^{-8}\\\\[/tex]

Then the correct option is A.

More about the ascending order link is given below.

https://brainly.com/question/320500