Respuesta :
Answer:
(a) [tex]\displaystyle F'(x) = \frac{1}{2\sqrt{x}} - 5[/tex]
(b) [tex]\displaystyle F'(x) = \frac{1}{2\sqrt{x}} - 5[/tex]
(c) Simplifying first
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Derivative Rule [Quotient Rule]: [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]
Step-by-step explanation:
Step 1: Define
Identify.
[tex]\displaystyle F(x) = \frac{x - 5x\sqrt{x}}{\sqrt{x}}[/tex]
Step 2: Differentiate Way 1
- Derivative Rule [Quotient Rule]: [tex]\displaystyle F'(x) = \frac{\sqrt{x} \big( x - 5x\sqrt{x} \big) ' - \big( \sqrt{x} \big) ' \big( x - 5x\sqrt{x} \big) }{\big( \sqrt{x} \big) ^2}[/tex]
- Rewrite [Derivative Property - Addition/Subtraction]: [tex]\displaystyle F'(x) = \frac{\sqrt{x} \Big[ \big( x \big) '- \big( 5x\sqrt{x} \big) ' \Big] - \big( \sqrt{x} \big) ' \big( x - 5x\sqrt{x} \big) }{\big( \sqrt{x} \big) ^2}[/tex]
- Derivative Rule [Product Rule]: [tex]\displaystyle F'(x) = \frac{\sqrt{x} \Big[ \big( x \big) '- \big( (5x)' \sqrt{x} + 5x(\sqrt{x})' \big) \Big] - \big( \sqrt{x} \big) ' \big( x - 5x\sqrt{x} \big) }{\big( \sqrt{x} \big) ^2}[/tex]
- Rewrite [Derivative Rule - Multiplied Constant]: [tex]\displaystyle F'(x) = \frac{\sqrt{x} \Big[ \big( x \big) '- \big( 5(x)' \sqrt{x} + 5x(\sqrt{x})' \big) \Big] - \big( \sqrt{x} \big) ' \big( x - 5x\sqrt{x} \big) }{\big( \sqrt{x} \big) ^2}[/tex]
- Derivative Rule [Basic Power Rule]: [tex]\displaystyle F'(x) = \frac{\sqrt{x} \Big[ 1 - \big( 5\sqrt{x} + \frac{5x}{2\sqrt{x}} \big) \Big] - \frac{1}{2\sqrt{x}} \big( x - 5x\sqrt{x} \big) }{\big( \sqrt{x} \big) ^2}[/tex]
- Simplify: [tex]\displaystyle F'(x) = \frac{\sqrt{x} \Big( 1 - 5\sqrt{x} - \frac{5x}{2\sqrt{x}} \Big) - \frac{x}{2\sqrt{x}} + \frac{5x\sqrt{x}}{2\sqrt{x}}}{x}[/tex]
- Simplify: [tex]\displaystyle F'(x) = \frac{\sqrt{x} - 5x - \frac{5x}{2} - \frac{x}{2\sqrt{x}} + \frac{5x}{2}}{x}[/tex]
- Simplify: [tex]\displaystyle F'(x) = \frac{\frac{\sqrt{x}}{2} - 5x}{x}[/tex]
- Simplify: [tex]\displaystyle F'(x) = \frac{- \Big( 10\sqrt{x} - 1 \Big) }{2\sqrt{x}}[/tex]
- Rewrite: [tex]\displaystyle F'(x) = \frac{1}{2\sqrt{x}} - 5[/tex]
∴ we find the derivative of the given function but it is a tedious method of computation.
Step 3: Differentiate Way 2
- [Function] Rewrite: [tex]\displaystyle F(x) = \frac{x}{\sqrt{x}} - \frac{5x\sqrt{x}}{\sqrt{x}}[/tex]
- [Function] Simplify: [tex]\displaystyle F(x) = \sqrt{x} - 5x[/tex]
- [Derivative] Rewrite [Derivative Property - Addition/Subtraction]: [tex]\displaystyle F'(x) = \big( \sqrt{x} \big) ' - \big( 5x \big) '[/tex]
- Rewrite [Derivative Property - Multiplied Constant]: [tex]\displaystyle F'(x) = \big( \sqrt{x} \big) ' - 5 \big( x \big) '[/tex]
- Derivative Rule [Basic Power Rule]: [tex]\displaystyle F'(x) = \frac{1}{2\sqrt{x}} - 5[/tex]
∴ we find the derivative of the given function and it is less complex and faster. We can conclude that simplifying first appears to be simpler for this problem.
---
Learn more about differentiation: https://brainly.com/question/17830594
Learn more about calculus: https://brainly.com/question/23558817
---
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation