Respuesta :

[tex]\textit{logarithm of factors} \\\\ \log_a(xy)\implies \log_a(x)+\log_a(y) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \ln\left( r^2s^{10}\sqrt[4]{r^2s^{10}} \right)\qquad \qquad \stackrel{\textit{let's for a second make}}{z = r^2s^{10}} \\\\\\ \ln\left(z\cdot \sqrt[4]{z} \right)\implies \ln\left(z\cdot z^{\frac{1}{4}} \right)\implies \ln\left(z^{1+\frac{1}{4}} \right)\implies \ln\left(z^{\frac{5}{4}} \right)[/tex]

[tex]\stackrel{\textit{and substituting back}}{\ln\left( \left[ r^2s^{10} \right]^{\frac{5}{4}} \right)}\implies \ln\left( r^{2\cdot \frac{5}{4}} ~~ s^{10\cdot \frac{5}{4}} \right)\implies \ln\left( r^{\frac{5}{2}}~~s^{\frac{25}{2}} \right) \\\\\\ \ln\left( r^{\frac{5}{2}} \right)~~ + ~~\ln\left( s^{\frac{25}{2}} \right)\implies \stackrel{A}{\cfrac{5}{2}}\ln(r)~~ + ~~\stackrel{B}{\cfrac{25}{2}}\ln(s)[/tex]