Respuesta :

Answer:

Step-by-step explanation:

(-6,-1) & (-1,-6)

[tex]Midpoint=\left(\dfrac{x_{1}+x_{2}}{2},\dfrac{y_{1}+y_{2}}{2} \right)\\\\\\=\left(\dfrac{-6-1}{2},\dfrac{-1-6}{2} \right)\\\\\\=\left(\dfrac{-7}{2},\dfrac{-7}{2} \right)\\\\\\[/tex]

= (-3.5 , -3.5)

Answer:

[tex]\boxed{\sf{(-3.5 , -3.5)}}}[/tex]

Step-by-step explanation:

This problem must be solved using the midpoint formula, which is similar to a slope formula.

Midpoint formula: [tex]\sf{(X_1,Y_1)}(X_2,Y_2)[/tex]

[tex]\sf{(\dfrac{x_2+x_1}{2},\quad \dfrac{y_2+y_1}{2})}[/tex]

y2=(-6)

y1=(-1)

x2=(-1)

x1=(-6)

Rewrite the problem and then solve it.

[tex]\left(\dfrac{-1-6}{2},\:\dfrac{-6-1}{2}\right)=-\sf{\dfrac{7}{2}, -\dfrac{7}{2}}[/tex]

Dividing is another option.

-7/2=-3.5

(-3.5, -3.5)

As a result, the final answer is (-3.5, -3.5).

I hope this helps! Let me know if my answer is wrong or not.