Respuesta :
Answer:
Step-by-step explanation:
(-6,-1) & (-1,-6)
[tex]Midpoint=\left(\dfrac{x_{1}+x_{2}}{2},\dfrac{y_{1}+y_{2}}{2} \right)\\\\\\=\left(\dfrac{-6-1}{2},\dfrac{-1-6}{2} \right)\\\\\\=\left(\dfrac{-7}{2},\dfrac{-7}{2} \right)\\\\\\[/tex]
= (-3.5 , -3.5)
Answer:
[tex]\boxed{\sf{(-3.5 , -3.5)}}}[/tex]
Step-by-step explanation:
This problem must be solved using the midpoint formula, which is similar to a slope formula.
Midpoint formula: [tex]\sf{(X_1,Y_1)}(X_2,Y_2)[/tex]
[tex]\sf{(\dfrac{x_2+x_1}{2},\quad \dfrac{y_2+y_1}{2})}[/tex]
y2=(-6)
y1=(-1)
x2=(-1)
x1=(-6)
Rewrite the problem and then solve it.
[tex]\left(\dfrac{-1-6}{2},\:\dfrac{-6-1}{2}\right)=-\sf{\dfrac{7}{2}, -\dfrac{7}{2}}[/tex]
Dividing is another option.
-7/2=-3.5
(-3.5, -3.5)
As a result, the final answer is (-3.5, -3.5).
I hope this helps! Let me know if my answer is wrong or not.