Answer:
Option B
Step-by-step explanation:
[tex]Distance = \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex]
A(0,4) & B(2,2)
[tex]AB =\sqrt{(2-0)^{2}+(2-4)^{2}}\\\\=\sqrt{2^{2}+(-2)^{2}}\\\\=\sqrt{4+4}\\\\=\sqrt{8}\\\\=\sqrt{2*2*2}\\\\=2\sqrt{2}\\[/tex]
B(2,2) & C(-2,-1)
[tex]BC =\sqrt{(-2-2)^{2}+(-1-2)^{2}}\\\\=\sqrt{(-4)^{2}+(-3)^{2}}\\\\=\sqrt{16+9}\\\\=\sqrt{25}\\\\=\sqrt{5*5}\\\\=5[/tex]
A(0,4) ; C(-2,-1)
[tex]AC=\sqrt{(-2-0)^{2}+(-1-4)^{2}}\\\\=\sqrt{(-2)^{2}+(-5)^{2}}\\\\=\sqrt{4+25}\\\\= \sqrt{29}[/tex]
Perimeter of triangle = AB + BC + AC
[tex]= 5 +2\sqrt{2}+\sqrt{29}[/tex]