Factor the expression using the two different techniques listed for Parts 1(a) and 1(b).

Factor the given expression using the GCF monomial.

Factor the given expression using the difference of squares.

Factor the expression using the two different techniques listed for Parts 1a and 1b Factor the given expression using the GCF monomial Factor the given expressi class=

Respuesta :

Factoring an expression involves rewriting the expression in simpler forms

The factorized expressions are [tex]9a^4b^{10}(4 - 9a^{12}b^{10})[/tex] and [tex](6a^2b^5 - 9a^8b^{10})(6a^2b^5 + 9a^8b^{10})[/tex]

Factor using GCF monomial

The expression is given as:

[tex]36a^4b^{10} - 81a^{16}b^{20}[/tex]

Factor out the common factors

[tex]9a^4b^{10}(4 - 9a^{12}b^{10})[/tex]

Factor using the difference of two squares

The expression is given as:

[tex]36a^4b^{10} - 81a^{16}b^{20}[/tex]

Rewrite as a difference of two squares

[tex](6a^2b^5)^2 - (9a^8b^{10})^2[/tex]

Express as difference of two squares

[tex](6a^2b^5 - 9a^8b^{10})(6a^2b^5 + 9a^8b^{10})[/tex]

Hence, the factorized expressions are [tex]9a^4b^{10}(4 - 9a^{12}b^{10})[/tex] and [tex](6a^2b^5 - 9a^8b^{10})(6a^2b^5 + 9a^8b^{10})[/tex]

Read more about factorized expressions at:

https://brainly.com/question/723406