Factoring an expression involves rewriting the expression in simpler forms
The factorized expressions are [tex]9a^4b^{10}(4 - 9a^{12}b^{10})[/tex] and [tex](6a^2b^5 - 9a^8b^{10})(6a^2b^5 + 9a^8b^{10})[/tex]
The expression is given as:
[tex]36a^4b^{10} - 81a^{16}b^{20}[/tex]
Factor out the common factors
[tex]9a^4b^{10}(4 - 9a^{12}b^{10})[/tex]
The expression is given as:
[tex]36a^4b^{10} - 81a^{16}b^{20}[/tex]
Rewrite as a difference of two squares
[tex](6a^2b^5)^2 - (9a^8b^{10})^2[/tex]
Express as difference of two squares
[tex](6a^2b^5 - 9a^8b^{10})(6a^2b^5 + 9a^8b^{10})[/tex]
Hence, the factorized expressions are [tex]9a^4b^{10}(4 - 9a^{12}b^{10})[/tex] and [tex](6a^2b^5 - 9a^8b^{10})(6a^2b^5 + 9a^8b^{10})[/tex]
Read more about factorized expressions at:
https://brainly.com/question/723406