Respuesta :

The steady-state energy balance is given by Equation (2.20):

0=\sum_{\text {in }} \dot{m}_{\text {in }} \hat{h}_{\text {in }}-\sum_{\text {out }} \dot{m}_{\text {out }} \hat{h}_{\text {out }}+\dot{Q}+\dot{W}_{s}0=∑

in

 

m

˙

 

in

 

h

^

 

in

−∑

out

 

m

˙

 

out

 

h

^

 

out

+

Q

˙

+

W

˙

 

s

 (2.20)

0=\sum_{\text {in }} \dot{m}_{ in } \hat{h}_{ in }-\sum_{\text {out }} \dot{m}_{ out } \hat{h}_{ out }+\dot{Q}+\dot{W}_{s}0=∑

in

 

m

˙

 

in

 

h

^

 

in

−∑

out

 

m

˙

 

out

 

h

^

 

out

+

Q

˙

+

W

˙

 

s

 (E2.5A)

For a turbine, there is one stream in and one stream out. Moreover, heat dissipation is negligible, since \dot{Q}<<\dot{W}_{s}

Q

˙

<<

W

˙

 

s

. If we label the inlet stream “1” and the outlet stream “2,” Equation (E2.5A) becomes:

0=\dot{m}_{1} \hat{h}_{1}-\dot{m}_{2} \hat{h}_{2}+\dot{W}_{s}0=

m

˙

 

1

 

h

^

 

1

m

˙

 

2

 

h

^

 

2

+

W

˙

 

s

 (E2.5B)

At steady-state, the mass balance can be written as:

\dot{m}_{1}=\dot{m}_{2}=\dot{m}

m

˙

 

1

=

m

˙

 

2

=

m

˙

 (E2.5C)

Plugging in Equation (E2.5C) into (E2.5B) gives:

\dot{W}_{s}=\dot{m}\left(\hat{h}_{2}-\hat{h}_{1}\right)

W

˙

 

s

=

m

˙

(

h

^

 

2

h

^

 

1

) (E2.5D)

We can look up values for specifi c enthalpy from the steam tables. For state 2, we use saturated steam at 1 bar (= 100 kPa) :

\hat{h}_{2}=2675.5[ kJ / kg ]

h

^

 

2

=2675.5[kJ/kg]

while state 1 is superheated steam at 500ºC and 100 bar (= 10 Mpa) :

\hat{h}_{1}=3373.6[ k J / kg ]

h

^

 

1

=3373.6[kJ/kg]

Plugging these numerical values into Equation (E2.5D) gives:

\dot{W}_{s}=10[ kg / s ](2675.5-3373.6)[ kJ / kg ]=-6981[ kW ]

W

˙

 

s

=10[kg/s](2675.5−3373.6)[kJ/kg]=−6981[kW]

Thus, this turbine generates approximately 7 MW of power. Note the negative sign, which indicates that we are getting useful work from the system. This is the equivalent power to that delivered by approximately 70 automobiles running simultaneously.anation: