Respuesta :
Answer:
5.2812
Step-by-step explanation:
[tex]10^{x-3.6}-7=41[/tex]
Add 7 to both sides:
[tex]\implies 10^{x-3.6}=48[/tex]
Taking logs of base 10:
[tex]\implies \log_{10}10^{x-3.6}=\log_{10}48[/tex]
Apply log rule [tex]\log a^b=b \log a[/tex]:
[tex]\implies (x-3.6)\log_{10}10=\log_{10}48[/tex]
Apply log rule [tex]\log_aa=1[/tex]:
[tex]\implies (x-3.6)\times 1 =\log_{10}48[/tex]
Simplify and solve:
[tex]\implies x-3.6=\log_{10}48[/tex]
[tex]\implies x=\log_{10}48+3.6[/tex]
[tex]\implies x = 5.281241237...[/tex]
[tex]10^{x-3.6}-7=41[/tex]
Use the rules of exponents and logarithms to solve the equation.
[tex]10^{x-3.6}-7=41[/tex]
Add 7 to both sides of the equation.
[tex]10^{x-3.6}=48[/tex]
Take the logarithm of both sides of the equation.
[tex]log(10^{x-3.6})=log(48)[/tex]
The logarithm of a number raised to a power is the power times the logarithm of the number.
[tex](x-3.6)log(10)=log(48)[/tex]
Add 3.6 to both sides of the equation.
[tex]x=log(48)-(-3.6)[/tex]
Solve by first finding [tex]log(48)[/tex] then subtract [tex](-3.6)[/tex] from the answer:
1. [tex]log(48)=1.6812412373755872181499834821531[/tex]
Now just solve the equation:
[tex]1.6812412373755872181499834821531 - (-3.6)=5.2812412373755872181499834821531[/tex]
Your answer is C. [tex]5.2812412373755872181499834821531[/tex] or [tex]5.2812[/tex]