Answer:
Step-by-step explanation:
[tex]2x - 3y\leq 6[/tex] ==> [tex]y\leq \frac{2}{3}x-2[/tex]
[tex]y < -\frac{1}{2} x[/tex]
[tex]2x - 3y\leq 6[/tex]
[tex]-2x[/tex] [tex]-2x[/tex]
[tex]-3y\leq -2x+6[/tex]
[tex]\frac{-3y}{-3} \leq \frac{-2x+6}{-3}[/tex]
[tex]y\geq \frac{2}{3}x-2[/tex]
[tex]y\geq \frac{2}{3}x-2[/tex]
[tex]y < -\frac{1}{2} x[/tex]
Check you answer using (-1,-1)
[tex]y\geq \frac{2}{3}x-2[/tex]
[tex]-1\geq \frac{2}{3}(-1)-2[/tex]
[tex]-1\geq -\frac{2}{3}-2[/tex]
[tex]-1\geq -\frac{2}{3}-\frac{6}{3}[/tex]
[tex]-1\geq -\frac{8}{3}[/tex]
[tex]-3(-1\geq -\frac{8}{3})[/tex]
[tex]3\geq 8[/tex]
True statement
Hope this helps!