Answer:
[tex] \frac{\pi}{4}, \: \frac{5\pi}{4}[/tex]
Step-by-step explanation:
[tex] \sin(x).\tan(x) = \sin(x) \\ \\ \implies \tan(x) = \frac{\sin(x) }{\sin(x)} \\ \\ \implies \tan(x) = 1 \\ (\because\:0\leq x\leq 2\pi) \\\\ \implies \tan(x) = \tan \frac{\pi}{4} \: or \: \tan(x) = \tan \bigg(\pi + \frac{\pi}{4} \bigg) \\ \\ \implies x = \frac{\pi}{4} \: or \: x = \frac{5\pi}{4} \\ \\ \huge{\purple{x = \frac{\pi}{4}, \: \frac{5\pi}{4}}}[/tex]