Respuesta :
Answer:
[tex]\sf g(x) = -1(x+3)^2 -2[/tex]
Explanation:
[tex]\sf original \ graph: \ y=-x^{2}[/tex]
the graph is translated 3 units to the left and 2 units down.
vertex: (-3,-2) point: (-1,-6)
[tex]\sf so \ new \ graph :[/tex]
[tex]\sf y = a(x-h)^2 +k[/tex]
[tex]\sf -6 = a(-1-(-3))^2 -2[/tex]
[tex]\sf -6 = 4a -2[/tex]
[tex]\sf 4a = -4[/tex]
[tex]\sf a = -1[/tex]
[tex]\sf equation:[/tex]
[tex]\sf y = a(x-h)^2 +k[/tex]
[tex]\sf y = -1(x+3)^2 -2[/tex]
✩ original graph: y = -x²
the graph is translated 3 units to the left and 2 units down.
✩ vertex: (-3,-2) point: (-1,-6)
[tex]\large{{\bold{ \underline{ \underline{ \overline{ \overline{ \pink {so \: new \: graph :}}}}}}}}[/tex]
↠y = a (x - h)² + k
↠-6= a(-1-(-3))² - 2
↠-6 = 4a - 2
↠4a = -4
↠a = 1
[tex]\large{{\bold{ \underline{ \underline{ \overline{ \overline{ \pink {equation :}}}}}}}}[/tex]
↠y = a (x - h)² + k
↠y = -1(x+3)² - 2