repost: Каков объем этой прямоугольной призмы?
45 кубических дюймов

81 кубический дюйм

180 кубических дюймов

405 кубических дюймов
(english: What is the volume of this rectangular prism?


45 cubic inches


81 cubic inches


180 cubic inches


405 cubic inches

repost Каков объем этой прямоугольной призмы 45 кубических дюймов 81 кубический дюйм 180 кубических дюймов 405 кубических дюймов english What is the volume of t class=

Respuesta :

So first of all we should know that the rectangular prism is a cuboid.

[tex] \\ \\ [/tex]

Given :-

  • heigth = 9 in.
  • Length = 5 in.
  • Width = 4 in.

[tex] \\ [/tex]

To find:-

  • Volume of cuboid.

[tex] \\ [/tex]

Solution:-

We know:-

[tex] \bigstar \boxed{ \rm volume \: of \: cuboid = length \times width \times height}[/tex]

[tex] \\ \\ [/tex]

So:-

[tex] \dashrightarrow \sf volume \: of \: cuboid = length \times width \times height \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf volume \: of \: cuboid = 9 \times 5 \times 4 \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf volume \: of \: cuboid = 45 \times 4 \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \bf volume \: of \: cuboid = 180 {in}^{3} \\ [/tex]

Therefore option C is correct .

[tex] \\ \\ [/tex]

know more:-

[tex] \\ \\ [/tex]

[tex]\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} = \dfrac{4}{3}\pi {r}^{3} }\\ \\ \bigstar \: \bf{Volume_{(cube)} = {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}[/tex]