Respuesta :

  • the πr² comes from area of circle.

  • volume of cone: [tex]\sf \frac{1}{3}[/tex]πr²h  →  [tex]\sf \frac{1}{3}[/tex]π(5)²(12) → 314.16 cm³

  • volume of cylinder: πr²h → π(5)²(12) → 942.48 cm³

solve for which is greater:

volume of cylinder - volume of cone

942.48 cm³ - 314.16 cm³

628.32 cm³

       Therefore, cylinder has larger volume by 628.32 cm³

Answer:

volume of a cylinder: [tex]\pi r^2h[/tex]

volume of a cone: [tex]\dfrac13\pi r^2h[/tex]

(where r is the radius and h is the height)

[tex]\pi r^2[/tex] is the formula for the area of a circle

Cylinder

[tex]\implies V=\pi r^2h=\pi \times 5^2 \times 12=300\pi \ \textsf{cm}^3[/tex]

Cone

[tex]\implies V=\dfrac13\pi r^2h=\dfrac13 \times \pi \times 5^2 \times 12=100\pi \ \textsf{cm}^3[/tex]

Comparing the two volumes, the volume of the cylinder is three times the volume of the cone.

ACCESS MORE
EDU ACCESS
Universidad de Mexico