Respuesta :
Given:
- P = -1200+2.5N
- P = -5000+1.6N
solve:
A.
[tex]\sf -1200 + 2.5N = -5000+1.6N[/tex]
[tex]\sf 2.5N - 1.6N = -5000 + 1200[/tex]
[tex]\sf 0.9N = -3800[/tex]
[tex]\sf N = \frac{-3800}{0.9}[/tex]
[tex]\sf N = -4222\frac{2}{9}[/tex]
[tex]\sf N = -4222.222...[/tex]
Find P:
[tex]\sf P = -5000+1.6(4222.222)[/tex]
[tex]\sf P = -11755.55...[/tex]
B.
As the number continues and is endless, it is an approximate solution.
Answer:
A) [tex]N=-\dfrac{38000}{9}[/tex]
B) approximate
Step-by-step explanation:
[tex]P=-1200+2.5N[/tex]
[tex]P=-5000+1.6N[/tex]
A) Substitute [tex]P=-1200+2.5N[/tex] into [tex]P=-5000+1.6N[/tex] and solve for N:
[tex]\implies -1200+2.5N=-5000+1.6N\\\\\implies 0.9N=-3800\\\\\implies N=-\dfrac{38000}{9}[/tex]
To find P, substitute found value of N into one of the equations and solve for P:
[tex]\implies P=-1200+2.5(-\dfrac{38000}{9})\\\\\implies P= -\dfrac{105800}{9}[/tex]
B) An approximate solution is more meaningful as hits to a website are measured in whole numbers not rationals or decimals.