Given :
⠀
To Find :
⠀
Solution :
We know that,
[tex]\qquad { \pmb{ \bf{Length \times Width = Area_{(rectangle)}}}}\: [/tex]
So,
Let's assume the width of the rectangle as x and the length will be (x + 2).
⠀
Now, Substituting the given values in the formula :
[tex]\qquad \sf \: { \dashrightarrow (x + 2) \times x = 48 }[/tex]
[tex]\qquad \sf \: { \dashrightarrow {x}^{2} + 2x = 48 }[/tex]
[tex]\qquad \sf \: { \dashrightarrow {x}^{2} + 2x - 48 = 0 }[/tex]
[tex]\qquad \sf \: { \dashrightarrow {x}^{2} +8x -6x- 48 = 0 }[/tex]
[tex]\qquad \sf \: { \dashrightarrow {x} (x +8) -6(x+8) = 0 }[/tex]
[tex]\qquad \sf \: { \dashrightarrow (x +8) (x - 6) = 0 }[/tex]
[tex]\qquad \sf \: { \dashrightarrow x = -8, \: \: x = 6 }[/tex]
⠀
Since, The width can't be negative, so the width will be 6 which is positive.
⠀
[tex]\qquad { \pmb{ \bf{ Width _{(rectangle)} = 6\:ft}}}\: [/tex]
[tex]\qquad { \pmb{ \bf{ Length _{(rectangle)} = 6+2=8 \: ft}}}\: [/tex]