stuck on a calc problem: #30 points!

Let's first write the given we have :
Now , let's assume that ;
[tex]{:\implies \quad \displaystyle \sf \int f(x)\: dx=F(x)}[/tex]
Now , proceeding further ;
[tex]{:\implies \quad \displaystyle \sf \int_{0}^{6}f(x)\: dx=9}[/tex]
[tex]{:\implies \quad \sf F(x)\bigg|_{0}^{6}=9}[/tex]
[tex]{:\implies \quad \sf F(6)-F(0)=9}[/tex]
[tex]{:\implies \quad \bf F(6)=F(0)+9\quad \qquad ---(i)}[/tex]
Also , we are given with ;
[tex]{:\implies \quad \displaystyle \sf \int_{3}^{6}f(x)\: dx=5}[/tex]
[tex]{:\implies \quad \sf F(x)\bigg|_{3}^{6}=5}[/tex]
[tex]{:\implies \quad \sf F(6)-F(3)=5}[/tex]
[tex]{:\implies \quad \bf F(6)=F(3)+5\quad \qquad ---(ii)}[/tex]
Now from (i) & (ii)
[tex]{:\implies \quad \sf F(3)+5=F(0)+9}[/tex]
[tex]{:\implies \quad \sf F(3)-F(0)=9-5}[/tex]
[tex]{:\implies \quad \bf F(3)-F(0)=4\quad \qquad ---(iii)}[/tex]
Now , let's go to what we have to find ;
[tex]{:\implies \quad \displaystyle \sf \int_{0}^{3}\bigg\{\dfrac{1}{2}f(x)-3g(x)\bigg\}dx}[/tex]
From the distributive of Integrals property we have ;
[tex]{:\implies \quad \displaystyle \sf \int_{0}^{3}\dfrac{1}{2}f(x)\: dx-\displaystyle \sf \int_{0}^{3}3g(x)\: dx}[/tex]
We knows that we can take out the Constant from the Integrand , So
[tex]{:\implies \quad \displaystyle \sf \dfrac{1}{2}\int_{0}^{3}f(x)\: dx -3\int_{0}^{3}g(x)\: dx}[/tex]
Now , we knows a property of definite Integrals :
Using this property and expanding the definite integral of f(x) we have ;
[tex]{:\implies \quad \sf \dfrac{1}{2}\{F(3)-F(0)\}+3\displaystyle \sf \int_{3}^{0}g(x)\: dx}[/tex]
[tex]{:\implies \quad \sf \dfrac{1}{2}(4)+3\times 7\quad \qquad \{\because (iii)\:\: and\:\: Given\}}[/tex]
[tex]{:\implies \quad \sf 2+21}[/tex]
[tex]{:\implies \quad \bf 23}[/tex]
[tex]{:\implies \quad \bf \therefore \quad \underline{\underline{\displaystyle \bf \int_{0}^{3}\bigg\{\dfrac{1}{2}f(x)-3g(x)\bigg\}dx=23}}}[/tex]