The ball thrown upwards follows a parabolic path
The equation that shows the function rewritten in the form that would be best used to identify the maximum height of the ball is [tex]h(t)=-16(t-1)^2+128[/tex]
The equation is given as:
[tex]h(t)=-16t^2+32t+112[/tex]
Factor out -16
[tex]h(t)=-16(t^2-2t)+112[/tex]
Express the bracket as a perfect square expression
[tex]h(t)=-16(t^2-2t + 1 - 1)+112[/tex]
Factor out -4
[tex]h(t)=-16(t^2-2t + 1)+112 + 16 * 1[/tex]
[tex]h(t)=-16(t^2-2t + 1)+128[/tex]
Express as a perfect square
[tex]h(t)=-16(t-1)^2+128[/tex]
Hence, the equivalent expression is [tex]h(t)=-16(t-1)^2+128[/tex]
Read more about parabolas at:
https://brainly.com/question/4061870