Step-by-step explanation:
Let use have a interger,n
Thus three consectice intergers can be represented by
[tex]n[/tex]
[tex]n + 1[/tex]
[tex]n + 2[/tex]
Multiply, and we get
[tex]n(n + 1)(n + 2)[/tex]
[tex]n( {n}^{2} + 3n + 2)[/tex]
[tex]n {}^{3} + 3 {n}^{2} + 2n[/tex]
Then add the middle number, n+1.
[tex] {n}^{3} + 3n {}^{2} + 3n + 1[/tex]
We must prove that the middle number cubed = the equation.
Using the binomial theroem,
[tex](n + 1) {}^{3} = {n}^{3} + 3( {n}^{2} 1 {}^{1} ) + 3n( {1}^{2} ) + 1 {}^{3} [/tex]
[tex](n + 1 ){}^{3} = {n}^{3} + 3 {n}^{2} + 3n + 1[/tex]
So this is indeed true.
You can do the subsitue variables for n to prove it.