Respuesta :
[tex]\\ \rm\rightarrowtail {\displaystyle\int\limits_{2}^{8}}(4x+6)dx[/tex]
[tex]\\ \rm\rightarrowtail [2x^2]{}_2^8+[6x]{}_2^8[/tex]
[tex]\\ \rm\rightarrowtail [2(8)^2-2(2)^2]+[6(8)-6(2)][/tex]
[tex]\\ \rm\rightarrowtail [2(64)-2(4)]+[48-12][/tex]
[tex]\\ \rm\rightarrowtail 128-8+36[/tex]
[tex]\\ \rm\rightarrowtail 120+36[/tex]
[tex]\\ \rm\rightarrowtail 156[/tex]
The result obtained by carrying out the integration of ₂∫⁸(4x + 6)dx is 156
Integral calculus
if y = xⁿ
Then the integration of y will be
∫ydx = [x^(n + 1)] / n + 1
Data obtained from the question
- ₂∫⁸(4x + 6)dx
- Integration =?
How to integrate ₂∫⁸(4x + 6)dx
We shall integrate individually
∫4x = 4x² / 2 = 2x²
∫6 = 6x
Thus, the integration of (4x + 6) is given as
∫4x + 6 = 2x² + 6x
Now, we shall consider the limits (i.e 8 and 2)
∫(4x + 6)dx = 2x² + 6x
₂∫⁸(4x + 6)dx = [2(8)² + 6(8)] – [2(2)² + 6(2)]
₂∫⁸(4x + 6)dx = [2(64) + 48)] – [2(4) + 12]
₂∫⁸(4x + 6)dx = [128 + 48] – [8 + 12]
₂∫⁸(4x + 6)dx = 176 – 20
₂∫⁸(4x + 6)dx = 156
Learn more about integration:
https://brainly.com/question/14405228