Respuesta :
Answer:
See below.
Explanation:
Here using F = ma , we need to derive the fire and second equation of motion.
[tex]\displaystyle \longrightarrow F = ma \dots(i) [/tex]
As we know that the rate of change of velocity is called acceleration. Therefore,
[tex]\displaystyle \longrightarrow F = m\dfrac{dv}{dt} [/tex]
From equation (i) we have,
[tex]\displaystyle \longrightarrow ma = m\dfrac{dv}{dt} [/tex]
If the mass is constant,
[tex]\displaystyle \longrightarrow a =\dfrac{dv}{dt}\\ [/tex]
[tex]\displaystyle \longrightarrow dv = a.dt [/tex]
On integrating both sides,
[tex]\displaystyle \longrightarrow \int dv = \int a .dt [/tex]
LHS will be integrated from v₀ to v and RHS will be integrated from 0 to t , as ;
[tex]\displaystyle \longrightarrow\int^v_{v_0} dv =\int^t_0 a .dt [/tex]
Here a is constant , so ;
[tex]\displaystyle \longrightarrow v|^v_{v_0}= a \int^t_0 dt\\[/tex]
[tex]\displaystyle \longrightarrow v - v_0= a(t-0)[/tex]
Adding v₀ both sides,
[tex]\displaystyle \longrightarrow
\underline{\underline{ v =v_0+at}} [/tex]
Hence we have derived the First equation of motion.
For second , as we know that ,
[tex]\displaystyle \longrightarrow v =\dfrac{dx}{dt}\\ [/tex]
[tex]\displaystyle \longrightarrow dx = v.dt [/tex]
Integrating both sides, we have;
[tex]\displaystyle \longrightarrow \int dx =\int v.dt\\[/tex]
Putting the limits,
[tex]\displaystyle \longrightarrow \int^x_{x_0} dx =\int_0^t v.dt [/tex]
From first equation,
[tex]\displaystyle \longrightarrow x|^x_{x_0}= \int^t_0 ( v_0+at).dt [/tex]
Distribute ,
[tex]\displaystyle \longrightarrow x - x_0= \int^t_0 v_0dt +\int^t_0 at.dt\\ [/tex]
[tex]\displaystyle \longrightarrow x-x_0= v_0(t-0)+a\bigg[\dfrac{t^2}{2}\bigg]^t_0\\[/tex]
Simplify,
[tex]\displaystyle \longrightarrow \underline{\underline{ x-x_0= v_0t +\dfrac{1}{2}at^2}}[/tex]
Therefore we have derived the second equation of motion.
And we are done!