Respuesta :
Answer:
Given -
♦ Radius of cone = 3 units
♦ Height = 7 units
[tex]volume = \frac{1}{3} \pi \: r {}^{2} h \\ \\ = > \frac{1}{\cancel{3}} \times \frac{22}{\cancel{7} } \times \cancel{ 3} \times 3 \times \cancel{7} \\ \\ = > 22 \times 3 \\ \\ = > 66 \: units {}^{3} [/tex]
Go for it :D
Answer:
[tex] \displaystyle \boxed{\tt \: VOLUME \; OF\; THE\; CONE = 66 \;units^3 } [/tex]
Step-by-step explanation:
Given:
Radius [r] = 3
Height [h] =7
To Find:
Volume of the cone
Solution:
We need to use the formula of volume of cone to find the volume of cone.
So We know that,
[tex] \boxed{\rm \: Volume \: of \: the \: cone = \tt \cfrac{1}{3} \pi{r} {}^{2} h}[/tex]
Where,
- π = 22/7[According to the question]
- r = radius
- h = height
So put their values in the formulae:
- r = 3
- h = 7
[tex] \rm \: Volume \: of \: the \: cone = \cfrac{1}{3 } \times \cfrac{22}{7} \times 3 {}^{2} \times 7[/tex]
Now Simplify to find the value of cone.
[tex] \rm \: Volume \: of \: the \: cone = \cfrac{1}{3} \times \cfrac{22}{7} \times 3 \times 3 \times 7[/tex]
[tex] \rm \: Volume \: of \: the \: cone = \cfrac{1}{3} \times \cfrac{22}{7} \times 9 \times 7[/tex]
[tex] \rm \: Volume \: of \: the \: cone = \cfrac{1}{3} \times \cfrac{22}{7} \times 63[/tex]
[tex] \rm \: Volume \: of \: the \: cone = \cfrac{1}{3} \times \cfrac{22}{ \cancel{7}{}^1} \times \cancel{63}\; \; {}^{9}[/tex]
[tex] \rm \: Volume \: of \: the \: cone = \cfrac{1}{3} \times 22 \times 9[/tex]
[tex] \rm \: Volume \: of \: the \: cone = \cfrac{1}{3} \times 198[/tex]
[tex] \rm \: Volume \: of \: the \: cone = \cfrac{1}{ \cancel{3} {}^{1} } \times \cancel{{ 198} } \: ^{66} [/tex]
[tex] \rm \: Volume \: of \: the \: cone = 1 \times 66[/tex]
[tex]\boxed{ \rm \: Volume \: of \: the \: cone = \boxed{\rm 66 \: \: units {}^{3}}} [/tex]
Hence, the volume of the cone would be 66 units^3 .
[tex] \rule{225pt}{2pt}[/tex]
I hope this helps!