Answer:
11, 13
Step-by-step explanation:
Let one of the odd positive integer be x , then the other odd positive integer is x+2.
Their sum of squares:
[tex]x^{2} +(x+2)^{2}[/tex]
[tex]x^{2} +(x+2)(x+2)[/tex]
[tex]x^{2} +x^{2} +4x+4[/tex]
[tex]2x^{2} +4x+4[/tex]
Given that their sum of squares = 290
[tex]2x^{2} +4x+4 =290[/tex]
[tex]2x^{2} +4x = 286[/tex]
[tex]2x^{2} +4x -286 = 0[/tex]
[tex]x^{2} +2x -143 =0[/tex]
[tex]x^{2}+13x-11x-143 =0[/tex]
[tex]x(x+13)-11(x+13)=0[/tex]
[tex](x+13)(x-11)=0[/tex]
Therefore x = 11, x=-13
We take positive value of x:
So, x =11 and (x+2)= 11+2=13
Therefore , the odd positive integers are 11 and 13