In a right isosceles triangle, the lengths of both legs are equal. For the given isosceles triangle, what is the value of x?

well, we know the triangle besides being an isosceles, is also a right-triangle, so let's use the pythagorean theorem.
[tex]\textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2 \qquad \begin{cases} c=\stackrel{hypotenuse}{\sqrt{72}}\\ a=\stackrel{adjacent}{x}\\ b=\stackrel{opposite}{x}\\ \end{cases}\implies (\sqrt{72})^2=x^2+x^2 \\\\\\ 72=2x^2\implies \cfrac{72}{2}=x^2\implies 36=x^2\implies \sqrt{36}=x\implies 6=x[/tex]
Answer:
x = 6
Step-by-step explanation:
sine law
a/ sin a = x / sin x
(72)^1/2 / sin 45º = x / sin 90
6 = x/1
multiply each side by 1
6 = x