A car is moving with speed 30 m/s and acceleration 6 m/s2 at a given instant. Using a second-degree Taylor polynomial, estimate how far the car moves in the next second.

Respuesta :

Answer:

[tex]33\; {\rm m}[/tex].

Explanation:

Let for positive integer [tex]n[/tex], let [tex]f^{(n)}(x)[/tex] denote the [tex]n[/tex]th derivative of [tex]f(x)[/tex] at [tex]x[/tex].

The [tex]n[/tex]th order Taylor polynomial expansion of [tex]f(x)[/tex] at [tex]x_{0}[/tex] could be written in the form:

[tex]\begin{aligned}f(x_{0}) + \sum\limits_{j = 1}^{n} \left[\frac{1}{j!}\, \left(f^{(j)}(x_{0})\right)\, (x - x_{0})^{j}\right]\end{aligned}[/tex].

For example, when [tex]n = 2[/tex], the polynomial would include three terms:

  • [tex]f(x_{0})[/tex],
  • [tex]\begin{aligned}\left(f^{(1)}(x_{0})\right)\, (x - x_{0})\end{aligned}[/tex] (for [tex]j = 1[/tex],) and
  • [tex]\displaystyle \frac{1}{2}\left(f^{(2)}(x) \right)\, (x - x_{0})^{2}[/tex] (for [tex]j = 2[/tex].)

[tex]\begin{aligned}f(x_{0}) + \left(f^{(1)}(x_{0})\right)\, (x - x_{0}) + \frac{1}{2}\left(f^{(2)}(x) \right)\, (x - x_{0})^{2}\end{aligned}[/tex].

Let [tex]f(t)[/tex] denote the distance that this vehicle travelled at time [tex]t[/tex].

  • The first derivative [tex]f^{(1)}(t)[/tex] would denote the speed of the vehicle at time [tex]t[/tex].
  • The second derivative [tex]f^{(2)}(t)[/tex] would denote the acceleration of the vehicle at time [tex]t[/tex].

At [tex]t_{0} = 0[/tex], the distance that the vehicle travelled would be [tex]0[/tex]. The question states that:

  • The speed of the vehicle at [tex]t_{0} = 0[/tex] was [tex]f^{(1)}(t_{0}) = 30[/tex].
  • The acceleration of the vehicle at [tex]t_{0} = 0[/tex] was [tex]f^{(2)}(t_{0}) = 6[/tex].

The second-degree Taylor polynomial expansion of [tex]f(t)[/tex] at [tex]t_{0} = 0[/tex] would be:

[tex]\begin{aligned}& f(t_{0}) + \left(f^{(1)}(t_{0})\right)\, (t - t_{0}) + \frac{1}{2}\left(f^{(2)}(t_{0}) \right)\, (t - t_{0})^{2} \\ =\; & f(0) + \left(f^{(1)}(0)\right)\, (t - 0) + \frac{1}{2}\left(f^{(2)}(0) \right)\, (t - 0)^{2} \\ =\; & f(0) + \left(f^{(1)}(0)\right) \, t + \frac{1}{2}\left(f^{(2)}(0) \right) \, t \end{aligned}[/tex].

Substituting in [tex]f(0) = 0[/tex], [tex]f^{(1)}(0) = 30[/tex], and [tex]f^{(2)}(0) = 6[/tex], the polynomial estimate of [tex]f(1)[/tex] at [tex]t_{0} = 0[/tex] would be:

[tex]\begin{aligned} & 0 + 30 + \frac{1}{2} \times 6 \\ =\; & 33\end{aligned}[/tex].

ACCESS MORE
EDU ACCESS
Universidad de Mexico