Heelllppp ppllzz !!!


Answer:
m∠FLH = 66°
m∠EBF = 16°
Step-by-step explanation:
Question 1
Given:
If LG bisects ∠FLH then m∠FLG = m∠HLG
⇒ 14x + 5 = 17x - 1
⇒ 6 = 3x
⇒ x = 2
Therefore, m∠HLG and m∠FLG = 33
m∠FLH = m∠FLG + m∠HLG
⇒ m∠FLH = 33 + 33 = 66°
Question 2
m∠ABE + m∠EBF = m∠ABF
⇒ 2b + m∠EBF = 7b - 24
⇒ m∠EBF = 7b - 24 - 2b
⇒ m∠EBF = 5b - 24
m∠ABE = m∠EBF
⇒ 2b = 5b - 24
⇒ -3b = - 24
⇒ b = 8
m∠EBF = 5b - 24
⇒ m∠EBF = 5(8) - 24 = 16