Respuesta :

Answer:

[tex]x^7\sqrt{x}[/tex]

Explanation:

[tex]\sqrt{x^{15}}[/tex]

apply exponent rule:

[tex]\sqrt{x^{14}x}[/tex]    

apply radical rule:

[tex]\sqrt{x^{14}}\sqrt{x}[/tex]

simplify more:

[tex]\sqrt{x^{7*2}}\sqrt{x}[/tex]

final answer:

[tex]x^7\sqrt{x}[/tex]

Answer:

[tex]x^7\sqrt{x}[/tex]

Step-by-step explanation:

[tex]\sqrt{x^{15}} =\sqrt{x^{(14+1)}}[/tex]

Apply the exponent rule [tex]a^{b+c}=a^b \cdot a^c[/tex]

[tex]\implies \sqrt{x^{(14+1)}}=\sqrt{x^{14}x^1}=\sqrt{x^{14}x}[/tex]

Apply the radical rule [tex]\sqrt{ab} =\sqrt{a}\sqrt{b}[/tex]:

[tex]\implies \sqrt{x^{14}x}=\sqrt{x^{14}} \sqrt{x}[/tex]

Apply the radical rule [tex]\sqrt[a]{x^b} =x^{\frac{b}{a}}[/tex]:

[tex]\implies \sqrt{x^{14}} \sqrt{x}=x^{\frac{14}{2}}\sqrt{x}=x^7\sqrt{x}[/tex]

ACCESS MORE